Классическая физика

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ.

Основной закон электромагнитной индукции.

Величайший физик XIX века Майкл Фарадей считал, что между электрическими и магнитными явлениями существует тесная взаимосвязь. Ампер, Био и другие ученые выяснили одну сторону этой взаимосвязи, с которой мы уже знакомы, а именно – магнитное действие тока. Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.

Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит (рис.3.1). Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током. Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром. Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.

Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.

Дальнейшие исследования индукционного тока в проводящих контурах различной формы и размеров показали справедливость следующего закона Фарадея:

Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:


 где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Рассмотрим пример, демонстрирующий данный закон (рис. 3.2). В контуре 1 создается ток силы I1, его можно изменять с помощью реостата R. Этот ток создает магнитное поле, пронизывающее контур 2. Если мы будем увеличивать ток I1, поток Фm магнитной индукции через контур 2 будет, изменяясь, расти. Это приведет к появлению в контуре 2 индукционного тока I2’, регистрируемого гальванометром G и направленного противоположно I1. Если, наоборот, уменьшать I1, то и поток через контур 2 будет уменьшаться, что приведет к появлению в нем индукционного тока I2’’, направленного так же, как I1.

Как определить направление индукционного тока? Профессор Петербургского университета Э.Х.Ленц в 1833 г. установил, что индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Это – существенный физический факт, демонстрирующий стремление системы сопротивляться изменению состояния.

Вернемся к рис. 3.2. При увеличении тока I1, т.е. возрастании потока магнитной индукции Фm, направленного вправо, когда dФm/dt >0, в контуре 2 возникает индукционный ток I2’, создающий собственный магнитный поток, направленный влево (данный поток стремится уменьшить Фm). Току I2’ соответствует εi< 0. Мы можем определить направление тока I2’ по правилу правого винта. Если ток в контуре 1 уменьшать, то dФm/dt < 0, и аналогично в контуре 2 возникает εi> 0 и ток I2”, собственный магнитный поток которого направлен так же, как и внешний поток Фm, потому что он стремится поддержать внешний поток постоянным, добавляя его.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:


 Это выражение представляет собой основной закон электромагнитной индукции.

При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.

Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности:


Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае


Немецкий физик Г.Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt. 

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

3.2. Явление самоиндукции.

Вокруг любого проводника с током существует собственное магнитное поле, которое пронизывает этот проводник. При изменении тока в контуре также меняется и собственный магнитный поток через сам этот контур. Отсюда следует, что в контуре индуцируется э.д.с. и появляется дополнительный индукционный ток. Возникающая в таких случаях э.д.с., называется э.д.с. самоиндукции, а само явление – явлением самоиндукции.

Самоиндукция – это частный случай электромагнитной индукции. В соответствии с законом Био-Савара-Лапласа магнитная индукция В пропорциональна силе тока, вызывающего это поле. Отсюда следует, что полный магнитный поток Фm, сцепленный с контуром, должен быть пропорционален силе тока I в контуре: Фm = LI. Коэффициент пропорциональности L между силой тока и магнитным потоком называется индуктивностью контура. Индуктивность зависит от геометрии контура (от его формы и размеров), а также от магнитной проницаемости окружающей контур среды. Если контур жесткий и поблизости от него нет ферромагнетиков, то его индуктивность – постоянная величина L=const. Единицей измерения индуктивности в СИ является генри (Г): 1Г - индуктивность такого контура, у которого при силе текущего в нем тока 1А возникает сцепленный с ним полный магнитный поток, равный 1Вб.

Наиболее значительной индуктивностью обладает катушка индуктивности, состоящая из изолированного проводника, свернутого в спираль. Она используется в качестве одного из основных элементов колебательных контуров, накопителей электрической энергии и источников магнитного поля. Катушки индуктивности наводят импульсное (переменное) магнитное поле при магнитно-импульсной обработке продуктов питания, находящихся в стеклянных, бумажных или полиэтиленовых контейнерах. Этот современный метод позволяет, например, пастеризовать пиво так, что его срок хранения увеличивается в 7 раз. Единичный магнитный импульс уменьшает популяцию микроорганизмов, содержащихся в продуктах, на три порядка.

В качестве примера вычислим индуктивность соленоида. Пусть длина соленоида будет во много раз больше диаметра его витков, тогда его можно считать практически бесконечным. При протекании по виткам тока I внутри соленоида появляется однородное магнитное поле, индукция которого равна В = μμ0Ιn, где n- число витков на единицу длины соленоида. Магнитный  поток через каждый из витков по отдельности равен Фm1 = ВS, где S – площадь витка. Тогда полный магнитный поток через соленоид составит:

Фm = NФm = nℓBS = nℓμμ0nIS = n2ℓμμ0ΙS

Произведение n·ℓ дает полное число витков соленоида N. Сопоставив полученное выражение с Фm = LI, получим, что индуктивность соленоида L = n2ℓμμ0S = n2μμ0V (где V= ℓ·S – это объем соленоида). Следовательно, индуктивность соленоида пропорциональна квадрату числа витков на единицу длины, объему соленоида и магнитной проницаемости среды, в которой он находится.

Э.д.с. самоиндукции вычисляется следующим образом:


По правилу Ленца дополнительные токи самоиндукции всегда направлены так, чтобы противодействовать изменениям основного тока в цепи. Это приводит к тому, что установление тока при замыкании цепи (т.е. его возрастание от нуля) и убывание при размыкании происходит не мгновенно, а постепенно. В данной ситуации процессам возрастания и убывания тока препятствует ток самоиндукции и индуктивность контура является мерой его инертности по отношению к изменению тока. При быстром размыкании электрической цепи возникает большая э.д.с. самоиндукции, которая может вызвать пробой воздушного зазора (искру) между контактами выключателя и вывести его из строя.


На главную