Начертательная геометрия Теоретическая механика Физика Курс лекций по истории искусства

Основы квантовой механики Физика учебник

Орбитальный момент

Условие полноты системы:

 .

 Далее требуем выполнения условий (см. выше):

.

Тем самым определены относительные фазы  функций, отвечающих заданному . Фиксируем фазу одной из функций. Мы выберем  так, чтобы   было действительным положительным числом.

 Произвольную функцию  получаем из  многократным действием операторов :

.

Далее используем явный вид :

.

Отсюда

Имеем функцию (см. выше)

.

Нормируя ее условием , получим

.

Теперь находим

.

При  отсюда следует

.

Тогда находим эквивалентное выражение для собственных функций:

.

В частности, при  получаем:

.

На главную