Математика. Выполнение контрольной работы

Теорема Остроградского-Гаусса

Обозначим через G трехмерное тело, ограниченное кусочно-непрерывной, гладкой, замкнутой поверхностью S с внешней нормалью. Предположим, что задано векторное поле

компоненты которого имеют непрерывные частные производные. Согласно формуле Остроградского-Гаусса, где через обозначена дивергенция векторного поля (она обозначается также символом ). Символ указывает, что поверхностный интеграл вычисляется по замкнутой поверхности. Формула Остроградского-Гаусса связывает поверхностные интегралы второго рода с соответствующими тройными интегралами. Данную формулу можно записать также в координатной форме: В частном случае, полагая , получаем формулу для вычисления объема тела G:

Применяя теорему Остроградского-Гаусса, вычислить поверхностный интеграл от векторного поля , где S − поверхность тела, образованного цилиндром и плоскостями z = −1, z = 1

Используя формулу Остроградского-Гаусса, оценить поверхностный интеграл от векторного поля , где S − поверхность тела, ограниченного и плоскостью z = 1.

Вычислить поверхностный интеграл от векторного поля , где S − поверхность параллелепипеда, образованного плоскостями x = 0, x = 1, y = 0, y = 2, z = 0, z = 3

Независимость криволинейных интегралов от пути интегрирования

Вычислить криволинейный интеграл для двух путей интегрирования: 1) AB − отрезок прямой от точки A (0,0) до точки B (1,1); 2) AB − участок параболы от A (0,0) до B (1,1).

Показать, что криволинейный интеграл , где точки A, B имеют координаты A (1,2), B (4,5), не зависит от пути интегрирования, и найти значение этого интеграла.

Определить, является ли векторное поле потенциальным?

Определить, является ли потенциальным векторное поле ?

Пример Вычислить поверхностный интеграл , где S − внешне ориентированная поверхность сферы, заданная уравнением .

Решение. Используя формулу Остроградского-Гаусса, можно записать Вычислим полученный тройной интеграл в сферических интегралах.
На главную