Начертательная геометрия Лекции, примеры выполнения задания

Физика
Конспект лекций
Двигатель внутреннего сгорания
Работа и мощность. Энергия
Основные положения квантовой механики
Свойства элементарных частиц

Элементы земного магнетизма

Электромагнитное поле
Вещество в электростатическом поле
Магнитное поле в веществе

Электромагнитные волны

Графика
Машиностроительное черчение
Дуга сопряжения
Построение внешнего сопряжения
Аксонометрическая проекция
сечения
разрезы
Варианты индивидуальных заданий
Резьба на чертежах
крепёжные  изделия
соединения сварные, паяные, клеевые, заклёпочные
Ручная  электродуговая сварка
Выполнение чертежей в AutoCAD
Начертательная геометрия
Методы проецирования
Задание поверхности на комплексном чертеже
Поверхности вращения второго порядка
Метрические задачи
Решение позиционных задач
Построение сечений
Местные разрезы
Аксонометрические проекции
Построить три проекции призмы
Эскиз детали
Инженерная графика
Условные изобращения резьбы
на чертежах
Метрическая резьба
Резьбовые соединения
Основные сведения о допусках
и посадках
Обозначение материалов на чертежах
деталей
Выполнение рабочих чертежей деталей
Курс лекций по истории искусства
Тибетский буддизм
Культура Африки
Искусство средних веков
Основные вехи в культуре XX в
Абстракция в России
История русской культуры
Техническое обслуживание ПК
Накопители на жестких дисках
Магнитная регистрация данных
Секторы
Основные узлы накопителей на жестких дисках
Механизмы привода головок
Плата управления
Противоударная подвеска
Интерфейс ESDI
Интеллектуальные IDE-накопители
Стандарты SCSI
Быстродействие
Температура
Программы неразрушающего форматирования

Поверхности вращения второго порядка

Цилиндр вращения

Цилиндр вращения образуется вращением образующей- l(прямой линией) вокруг параллельной ей оси.

Г(i.l), а(а2) Ì Г; а1, а3 =?

Поверхности вращения второго порядка

Рис. 2-81

Алгоритм построения

1) i ^^ П1, l || i, l - горизонтально проецирующая прямая, значит Г ^^ П1 -цилиндр занимает проецирующее положение относительно П1.

2) Г1 - главная проекция, которая обладает собирательными свойствами, поэтому а1 = Г1,

3) а3 строится по свойству принадлежности линии данной поверхности (а Ì Г) (см. рис. 2-81)

4) Точка 3 расположена на профильном меридиане, поэтому точка 33 является границей видимости на П3

Эллипсоид сжатый

Эллипсоид вращения Образуется вращением эллипса вокруг оси

Винтовые поверхности Как Вы думаете, какое свойство винтовых поверхностей обеспечивает им широкое применение в технике: винты, шнеки, сверла, пружины? Оказывается эти поверхности могут сдвигаться, т.е. совершая винтовое перемещение, поверхность скользит вдоль самой себя.

Позиционные задачи В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций. В технике детали большинства изделий имеют формы, представляющие собой поверхности, пересечённые либо плоскостями, либо другими поверхностями. Для того, чтобы проектировать и изготавливать такие изделия, необходимо научиться строить линии пересечения различных геометрических фигур. В этом вам поможет данный раздел начертательной геометрии.

Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

Конические сечения Решение второй главной позиционной задачи по 2 алгоритму рассмотрим на примере конических сечений. Ещё в Древней Греции был известен тот факт, что при пересечении конуса различными плоскостями можно получить прямые линии, кривые второго порядка и, как вырожденный случай, точку

Задача: Построить линию пересечения сферы S и горизонтально проецирующей призмы Г

Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие. В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

Задача: Найти точки пересечения пирамиды Г(SABC) с прямой а

Частные случаи пересечения поверхностей вращения второго порядка Пересечение соосных поверхностей вращения.

Конус вращения

Конус вращения образуется вращением образующей- l (прямой линией) вокруг оси, которую она пересекает.

F(i, l), a(а2) Ì F; а1, а3 = ?

i ^ П1, l Ç i; l - занимает положение прямой уровня (фронтали)

l- прямая линия, поэтому цилиндр и конус относят так же и к линейчатым поверхностям. Например, конус можно задать другим способом, как линейчатую поверхность F(m,S), S - фиксированная точка, m (окружность, основание конуса) - неподвижная направляющая. Или как циклическую поверхность F(m,l), у которой l-образующая есть монотонно меняющаяся окружность, движущаяся по неподвижной направляющей (прямой линии) -m.

Конус вращения

Рис. 2-82

Алгоритм построения а1, а3

1. Сначала отмечают на а2 особые точки (рис. 2.82):

Точка 12 Þ 11, 13 - по принадлежности окружности основания

Точка 42 Þ 41, 43 - по принадлежности главному меридиану

2. Промежуточные: 32 Þ 31, 33 по принадлежности параллели радиусом – R23

3. Точка 22 Þ 21 по принадлежности параллели – R22

22 - 23 по принадлежности профильному меридиану

Видимость кривой - а:

1) На П1 кривая а1 видима, т.к. на П1 видима вся поверхность.

2) На П3 границей видимости служит профильный меридиан (точка 23).

Сфера

Сфера образуется вращением окружности (l) вокруг оси (ее диаметра) (i)

Г(i l), - сфера, i ^ П1 А(А2) Î Г; А1, А3 = ?

Сфера

Рис. 2-83

а (а1, а2, а3) - экватор, определяет видимость относительно П1

в (в1, в2, в3) - главный (фронтальный) меридиан, определяет видимость относительно П2

с (с1, с2, с3) - профильный меридиан, определяет видимость относительно П3

Алгоритм построения точки А(А1, А3)

1. а) Для построения А1 через точку А2(задана видимой) проводят параллель, замеряют радиус – R2(от оси до очерка), строят горизонтальную проекцию этой параллели, проводят линию связи из точки А2 Þ А1.

б) Определяют видимость А1 - невидима, т.к. точка А(А2) на расположена ниже экватора ( на П2 - в незаштрихованной зоне).

2. а) Для построения А3 из точки А2 проводят линию связи на П3, на П1 замеряют расстояние от фронтального меридиана (в1)- Dу (параллельно оси У), переносят на П3, откладывая от проекции фронтального меридиана (в3) по линии связи (параллельно оси У) Þ А3

б) Определяют видимость А3 - видима, т.к. точка А(А1) на П1 расположена перед профильным меридианом (на П1 в заштрихованной зоне) (рис.2-83).

Пример: F(i, l), а(а2) Ì F, а1, а3 = ? (рис. 2-84)

Алгоритм построения точки

Рис. 2-84

1. Сначала отмечают особые точки (рис. 2-84):

Точка 22 Þ 21, 23 - по принадлежности экватору

Точки 12 Þ 11, 13 и 32 Þ 31, 33 - по принадлежности главному меридиану

Точка 52 Þ 51, 53 по принадлежности профильному меридиану

2. Промежуточные: 4, 6, 7 находят с помощью параллелей, радиусы которых замеряют от оси до очерка на П2. Профильные проекции точек находят см. (рис. 2-83) Þ А3.

Особые параллели и точки на них являются границами видимости кривой на соответствующих проекциях сферы.

Поверхности вращения второго порядка

Это поверхности, образованные вращением кривой второго порядка вокруг оси, лежащей в плоскости симметрии кривой.

Алгоритм построения цилиндроида Для построения образующих (если поверхность уже сконструирована) проводят ряд плоскостей, параллельных плоскости параллелизма, и определяют точки их пересечения с направляющими (m, n)

Эллипсоид сжатый

Эллипсоид вращения Образуется вращением эллипса вокруг оси

Винтовые поверхности Как Вы думаете, какое свойство винтовых поверхностей обеспечивает им широкое применение в технике: винты, шнеки, сверла, пружины? Оказывается эти поверхности могут сдвигаться, т.е. совершая винтовое перемещение, поверхность скользит вдоль самой себя.

На главную